4 讨论深度度量学习(DML)用于人脸验证、识别、人员重识别和3D形状检索,表1显示,DML对类别多、样本少的任务效果显著。DML由度量损失函数、采样策略和网络结构组成,如Siamese、Triplet和Quadruple网络。度量损失函数如对比损失、三重损失、四重损失和n对损失,增加数据样本大小,但可能导致训练时间过长和内存消耗大。硬负挖掘和半硬负挖掘提供信息丰富的样本,而正确的采样策略对快速收敛至关重要。聚类损失作为度量函数,无需数据准备步骤。DML通常在GPU上执行,但某些策略也可用于CPU集群以使用大批量数据。DML高度依赖数据,度量损失函数可能无法提供快速收敛。预训练网络模型的权重有助于嵌入空间快速收敛和更具辨别力的学习。5 结论深度度量学习是近年来的研究热点,旨在学习相似性度量,用于计算对象间的相似性或不相似性。目前,Siamese和Triplet网络在图像、视频、文本和音频任务中表现出高效性。深度度量学习研究包括信息输入样本、网络模型结构和度量损失函数。未来研究方向包括优化采样策略、共享权重和度量损失函数的组合。虽然研究已取得进展,但仍有许多方面有待探索,如现有方法的缺点和局部特征与全局特征的结合。参考资料:《 Deep Metric Learning: A Survey》