微信扫码
添加专属顾问
我要投稿
知识图谱发展阶段与趋势
通用知识图谱阶段:此阶段以从开放数据集中抽取SPG(Subject-Predicate-Object)三元组构建静态知识库为主,旨在提升搜索推荐精准度与用户体验;
领域知识图谱阶段:知识获取方式从开放支持域到封闭支持域为主,融合专家经验规则,旨在挖掘专业领域内稀缺知识,主要用于如风控、信贷等场景;
企业级知识管理:当前阶段与大模型相结合,知识图谱目标变成关注知识标准化、跨域数据互联与复用等问题。
从静态常识到 Deep Context:随着阶段演进,仅在推理过程中加入文本信息,概念,或加入交易或社交等实体间关系,其推理效果并无显著效果。转而强调实体多要素信息的深度协同,以揭示稀疏实体间隐含的语义关联,实现语义可解释的稠密化。
SPG语义增强
?OpenSPG GitHub,欢迎大家 Star 关注~:
https://github.com/OpenSPG/openspg
SPG能力进化与升级
SPG能力的进化与分级共包括五个阶段,其能力逐渐增强并且逐步进行兼容:
利用TuGraph赋能SPG图谱推理
如何在知识图谱推理中使用 TuGraph 能力?首先在知识推理中,利用OpenSPG逻辑规则执行引擎,其大致可以分为三部分:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-05-27
向量、向量数据库是什么?用选电脑和写代码的方式给你讲明白!
2025-05-26
知识图谱焕发生机,激发大模型LLM深层次推理 —— 昨天,今天和明天
2025-05-25
AI 在落地之前,要先投资几个数据库
2025-05-24
大模型帮你读书-使用LLM构建实体关系图谱
2025-05-23
Agent Infra 图谱:哪些组件值得为 Agent 重做一遍?
2025-05-23
Graph-RAG全面综述:如何用知识图谱+大模型解决信息检索难题?
2025-05-22
无需代码!MCP + Neo4j 如何颠覆知识图谱构建?
2025-05-21
从部署到迁移,怎么用好Milvus,这是我们的经验总结
2024-07-17
2025-01-02
2024-08-13
2024-08-27
2024-07-11
2025-01-03
2024-06-24
2024-07-13
2024-06-10
2024-07-12
2025-05-23
2025-05-23
2025-05-22
2025-05-20
2025-04-20
2025-04-15
2025-04-09
2025-03-29