微信扫码
添加专属顾问
我要投稿
from datasets import load_dataset
# 下载并加载 GLUE 数据集的 MRPC 任务
dataset = load_dataset('glue', 'mrpc')
# 打印数据集的基本信息
print(dataset)
from datasets import DatasetBuilder, BuilderConfig
class CustomDatasetBuilder(DatasetBuilder):
BUILDER_CONFIGS = [
BuilderConfig(name="custom_config", description="A custom dataset configuration")
]
def _info(self):
return DatasetInfo(
description="Custom dataset",
features=Features({
"text": Value(dtype="string"),
"label": ClassLabel(names=["negative", "positive"])
})
)
def _split_generators(self, dl_manager):
# 实现数据下载和划分的逻辑
pass
def _generate_examples(self, filepath):
# 实现数据生成的逻辑
pass
from datasets import DatasetBuilder
class MyDatasetBuilder(DatasetBuilder):
def _split_generators(self, dl_manager):
# 下载数据集并返回数据划分
return [
SplitGenerator(name="train", gen_kwargs={"filepath": "path/to/train_data"}),
SplitGenerator(name="test", gen_kwargs={"filepath": "path/to/test_data"})
]
def _generate_examples(self, filepath):
# 从文件中读取数据并生成示例
with open(filepath, "r") as file:
for id_, line in enumerate(file):
yield id_, {"text": line.strip(), "label": 1} # 示例标签
dataset = load_dataset('glue', 'mrpc', split='train') # 加载训练集
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def preprocess_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
dataset = load_dataset('glue', 'mrpc')
dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
dataset = load_dataset('glue', 'mrpc')
dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
# 使用 map 方法应用预处理函数
processed_dataset = dataset.map(preprocess_function, batched=True)
# 打印处理后的数据集样本
print(processed_dataset)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-05-26
DeepSeek V3 0526更新?实测代码能力已经提升,附实测案例。
2025-05-26
从MCP实践到开发简单的MCP服务
2025-05-26
MCP Server的五种主流架构与Nacos的选择
2025-05-26
聊聊Cherry Studio如何接入vLLM部署的本地大模型
2025-05-25
一文搞懂大模型的预训练(Pre-training)
2025-05-24
颠覆认知!大模型自检自改新范式,彻底告别人工标注
2025-05-23
Reasoning模型蒸馏实践:用大模型提升小模型能力
2025-05-23
OpenAI 重磅推出!核心API新增MCP功能,智能体开发迎来翻天覆地的变化
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01