微信扫码
添加专属顾问
我要投稿
RAG技术如何抵御新模型挑战,持续在AI领域占有一席之地。 核心内容: 1. RAG技术的初衷与目标:结合参数化和非参数化记忆 2. RAG如何解决生成式语言模型的固有缺陷 3. 尽管新模型不断涌现,RAG在人工智能领域的必要性依然存在
每隔几个月,人工智能领域就会经历类似的模式。一个具有更大上下文窗口的新模型问世,社交媒体上便会充斥着“RAG 已死”的宣言。Meta 最近的突破再次引发了这场讨论——Llama 4 Scout 惊人的 1000 万(理论上)token 上下文窗口代表着一次真正的飞跃。
RAG 的初衷
为什么我们仍然需要 RAG(并且永远需要)
警惕错误的二分法
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-10-27
2024-09-04
2024-05-05
2024-07-18
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-05-23
2025-05-16
2025-05-15
2025-05-14
2025-05-14
2025-05-13
2025-05-11
2025-05-08