微信扫码
添加专属顾问
我要投稿
现有的RAG系统存在显著的局限性,包括依赖于平面数据表示和缺乏足够的上下文感知能力,这可能导致答案碎片化,无法捕捉复杂的相互依赖关系。
广泛的实验验证表明,与现有方法相比,LightRAG在多个关键维度上,包括全面性、多样性、知识赋能,都显示出了显著的改进。LightRAG效果优于GraphRAG、NaiveRAG、RQ-RAG 、HyDE。
使用NaiveRAG作为参考,LightRAG的简化版本的性能
LightRAG检索和生成过程。当提出查询“哪些指标对于评估电影推荐系统最有信息量?”时,大型语言模型(LLM)首先提取低级和高级关键词。这些关键词指导在生成的知识图谱上的双级检索过程,目标是相关实体和关系。检索到的信息被组织成三个组成部分:实体、关系和相应的文本块。这些结构化数据随后被输入到LLM中,使其能够生成对查询的全面回答。
https://github.com/HKUDS/LightRAGhttps://arxiv.org/pdf/2410.05779LIGHTRAG: SIMPLE AND FAST RETRIEVAL-AUGMENTED GENERATION
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-05-27
Dify工具插件开发和智能体开发全流程实战
2025-05-27
一个让工作效率翻倍的AI神器,Cherry Studio你值得拥有!
2025-05-27
Docext:无需 OCR,本地部署的文档提取神器,企业数据处理新选择
2025-05-26
太猛了,字节把GPT-4o级图像模型开源了!
2025-05-26
Qwen3硬核解析:从36万亿Token到“思考预算”
2025-05-26
蚂蚁集团开源antv的MCP服务:AI智能体与数据可视化的桥梁如何搭建?
2025-05-26
MinerU:高精度纸媒文档解析与数据提取一站式解决方案
2025-05-26
顶级开发者默默换掉了基础大模型
2024-07-25
2025-01-01
2025-01-21
2024-05-06
2024-09-20
2024-07-20
2024-07-11
2024-06-12
2024-12-26
2024-08-13
2025-05-26
2025-05-25
2025-05-23
2025-05-17
2025-05-17
2025-05-17
2025-05-16
2025-05-14